Sunday, April 18, 2021

Exploring Infinity v.31

Infinity is the largest number of divergent arrays of counting numbers, and it is the same figure for all of them. 

That's how I look at it

So Infinitely small is not for the number, but for the magnitude of the smallness. Which is beyond huge

---------------------------

Is infinity minus one infinity? I see no reason why infinity minus one could be infinity.


Is infinity plus one a bigger infinity than the initial infinity? The initial infinity must have been defined for it to be able to be increased in number. So they are no longer infinity


Assuming the space is infinite, is infinite km's of space smaller than infinite m's of space?

Is 1000 km of string the same with 1000 m of string? no

Is infinite km of space the same with infinite m of space? yes


So these arguments are my ways of defending my position, any response? please

-----------------------------

So the understanding of Infinity contains the element of "Uncomparable largeness" in respect to the counting number that is to be assigned to the order of magnitude.

So the key to this comprehension is to firstly always think in terms of relativity... or at least it is my most straight forward precondition/way to be able to achieve so. 

-----------------------------

Edit 23/04/2021

Ok so there was a definition problem. I still think people should distinct between limitlessness vs finite numbers that are so big they are inarticulable. These are two different things

-----------------------------

Let's define infinity as limitlessness, what is 1/infinity? I tend to not say zero as the answer, I rather say infinitely small. 

What is 1/0 then, well, when we say 2 divided by 2, we are saying 2 divided by 2 equal segments and each segments were equal to... 1 is the answer (1,1). When we say 1 divided by 3, we are saying 1 divided by 3 equal segments and each segments were equal to 0.333333... is the answer (0.333,0.333,0.333). When we say 1 divided by zero, we should be saying 1 divided by 0 equal segments and each segments were equal to 1/2, 1/3, 1/6 OR 1/3, 1/9, 5/9, OR 1/4, 1/2, 2/15, 1/5, OR 1/7, 3/7, 1.6/7, 0.8/7, 0.6/7... etc. It would be an array of ORs that were stretched to who knows where, I don't know maybe (...) or infinity.

Table:

Numerator: 1

Divided by infinity of the same segments = ([infinitely small],...to the infinity)

Divided by 1/(...) of the same segments a.k.a super small segment = ([...])

Divided by 3 of the same segments = ([0.333],[0.333],[0.333])

Divided by 2 of the same segments = ([0.5],[0.5])

Divided by 1 of the same segments = ([1])

Divided by 1/2 of the same segments a.k.a half a segment = ([2])

Divided by 1/3 of the same segments a.k.a a third of a segment = ([3])

Divided by 1/(...) of the same segements a.k.a a super small fraction of a segment = ([...])

Divided by 1/infinitely_small of the same segment a.k.a an infinitely small fraction of a segment = (infinity) 

Divided by 0 of the same segment  (1/2, 1/3, 1/6 OR 1/3, 1/9, 5/9, OR 1/4, 1/2, 2/15, 1/5, OR 1/7, 3/7, 1.6/7, 0.8/7, 0.6/7... etc) a.k.a irregulars

Divided by 1/0 of the same segment (I'm not sure about this but 0 is my answer for now). 

So any number divided by irregulars would yield the sum of the numbers in the array

HOWEVER: This irregular thing is kind of weird, it seems like it could contain anything anywhere...
Edit: Oh, because it's an array the answer is in it not the sum of it.
Edit: so for example you get this (nice video from Josh Hush, accessed April 2021): 
2b = b (irregulars) the irregulars' value would be 2. 
It depends on the equation, it shouldn't be just any number I feel.
-------------------------------------

Filling triangles within circles will have this behavior:

Length of the bases of the triangles = r / (Total number of triangles / 4)

So when comes to finding the area of a circle using this method, pay attention that:
The infinitesimal = 4r / The (...)

This one is wrong too... 4(2r^0.5)/The (...) ?

r' = 0.5 δ'
r'' = 0.5 δ''
r''' = 0.5 δ'''
etc
δ' = 4r/(...)'
δ'' = 4(0.5 δ')/(...)'
δ''' = 4(0.5 δ'')/(...)'
etc

So,
[1/2 * δ' r * (...)'] + [1/2 * δ'' * r' * (...)' * 1/2] + [1/2 * δ''' * r'' * (...)' * 1/2] + etc...

Now, this should go make pi if I could simplify it,

No, the arch was not half a circle. That was wrong


3 comments:

  1. Youtube video inspirations:

    The Opposite of Infinity - Numberphile

    Infinitesimals and Non Standard Analysis - Shaun Regenbaum

    Area of triangles intuition | Algebra I | High School Math | Khan Academy

    ReplyDelete
  2. This comment has been removed by the author.

    ReplyDelete
  3. e (Euler's Number) - Numberphile

    (For the infinity km and m analogy I made it myself as well as the diagram/table... however, I do remember hearing it from someone when I was in highschool...
    And someone kind of seemed to hint a family member that he told that to people somewhere in the past. I do remembered there was something like that and likely I reinvented the path to there because of that (kind of what I tend to ended up doing sometimes). But the unclearness prevented me from being open so... I did did the work though even though it might be "easier", sure)

    ReplyDelete